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Abstract

Video anomaly detection (VAD) is crucial in scenarios such
as surveillance and autonomous driving, where timely de-
tection of unexpected activities is essential. Albeit existing
methods have primarily focused on detecting anomalous
objects in videos—either by identifying anomalous frames
or objects—they often neglect finer-grained analysis, such
as anomalous pixels, which limits their ability to capture
a broader range of anomalies. To address this challenge,
we propose an innovative VAD framework called Track
Any Anomalous Object (TAO), which introduces a Granular
Video Anomaly Detection Framework that, for the first time,
integrates the detection of multiple fine-grained anomalous
objects into a unified framework. Unlike methods that as-
sign anomaly scores to every pixel at each moment, our ap-
proach transforms the problem into pixel-level tracking of
anomalous objects. By linking anomaly scores to subse-
quent tasks such as image segmentation and video tracking,
our method eliminates the need for threshold selection and
achieves more precise anomaly localization, even in long
and challenging video sequences. Experiments on exten-
sive datasets demonstrate that TAO achieves state-of-the-
art performance, setting a new progress for VAD by provid-
ing a practical, granular, and holistic solution. For more in-
formation, visit the project page at: https://tao-25.github.io/

1. Introduction
Video Anomaly Detection (VAD) involves identifying un-
usual or unexpected activities in surveillance videos and
has significant applications in areas such as security mon-
itoring (e.g., detecting violent behavior) and autonomous
driving (e.g., recognizing traffic accidents). Current VAD
research has developed along two main directions, which
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Figure 1. Analyzing the Limitations of Existing VAD Models.
Video anomaly detection (VAD) models are predominantly frame-
centric or object-centric. Frame-centric methods detect anomalies
in frames without localizing them, while object-centric methods
identify anomalous objects but lack pixel-level accuracy. Pixel-
centric models address these gaps by providing pixel-level local-
ization, delivering fine-grained segmentation and precise delin-
eation of anomalies, particularly for overlapping objects where tra-
ditional methods struggle.

are reflected in both methodologies and evaluation bench-
marks. Frame-centric methods [1, 2, 11, 32, 34, 39, 44, 57]
and their corresponding frame-level benchmarks [18, 36,
49, 57] focus on analyzing entire frames to detect global
anomalies (e.g., fires or smoke), typically evaluated us-
ing frame-level AUC metrics. In contrast, object-centric
methods [3, 8–10, 19, 38, 41, 43, 48] and their object-
level benchmarks [10, 19, 40] leverage pre-trained feature
extractors to detect object-specific anomalies (e.g., human
falls or vehicle accidents), evaluated using metrics such as
TBDC [40] and RBDC [40], which comprehensively mea-
sure temporal consistency and spatial localization precision.

Despite these advances, a critical gap remains in real-
world applications of VAD where fine-grained localization
of anomalous objects is essential. As illustrated in Fig. 1,
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current approaches suffer from fundamental shortage as
frame-centric methods can only identify the presence of
anomalies without localizing specific regions, while object-
centric methods, though more precise, lack pixel-level accu-
racy. These limitations become particularly pronounced in
complex scenarios with overlapping anomalies, where ac-
curate delineation of object boundaries and shapes is cru-
cial [4, 12, 14, 20, 28, 46, 50]. This observation motivates us
to consider a more challenging yet practical scenario: Can
we achieve both object-level structural integrity and pixel-
level precision in a granular anomaly detection?

To address this challenge, we propose enhancing ex-
isting VAD benchmarks with pixel-level anomaly evalua-
tion. While a straightforward approach would be to em-
ploy an anomaly segmentation task for pixel-wise classifi-
cation [6, 13, 16, 22, 27, 62], this method falls short when
dealing with multiple, potentially overlapping anomalous
objects. Instead, inspired by instance segmentation tech-
niques [15, 17, 24, 45, 52], we develop a novel evaluation
framework that simultaneously considers both object-level
and pixel-level anomaly detection accuracy. This frame-
work ensures that detected anomalies accurately correspond
to their true shapes, precise positions, and spatial distribu-
tions, while effectively minimizing false positives caused
by local feature similarities or noise.

However, implementing precise pixel-level tracking in
videos presents significant challenges, particularly in main-
taining semantic and temporal consistency across frames.
Traditional supervised approaches require extensive labeled
data, which is scarce in existing datasets with pixel-level
annotations. To overcome these challenges, we leverage
SAM2 [42], a large-scale pre-trained segmentation model
capable of processing both static images and video streams
in real-time without requiring additional fine-tuning on spe-
cific anomaly datasets. Its ability to precisely delineate ob-
ject contours and structures makes it particularly effective in
handling complex scenarios involving overlapping anoma-
lies or occlusions.

Building upon these foundations, we propose TAO, an
integrated framework that combines object-centric anomaly
detection algorithms with SAM2 to create a simple yet ef-
fective fine-grained video anomaly detection system. For
videos containing anomalous frames, our object-centric
detection model generates bounding boxes for detected
anomalies. After robust filtering, these boxes serve as
prompting boxes for SAM2, which then generates segmen-
tation masks for the anomalous objects. Evaluated on our
proposed benchmark, our method achieves state-of-the-art
performance on two widely-used datasets, demonstrating its
effectiveness in bridging the gap between object-level de-
tection and pixel-precise segmentation. The contributions
of our paper are as follows:
• We present a new testing standard that unifies pixel-level

and object-level assessment in video anomaly detection,
addressing the limitations of existing metrics in complex
scenarios with multiple or overlapping anomalies.

• We introduce TAO, a streamlined framework that in-
tegrates object-centric anomaly detection with the seg-
mentation capabilities from vision foundation model, en-
abling precise pixel-level tracking of anomalous objects
without requiring additional fine-tuning.

• Through extensive experiments on UCSD Ped2 and
ShanghaiTech Campus datasets, we demonstrate that
our approach achieves state-of-the-art performance under
both traditional metrics and our proposed benchmark.

2. Related Work
Video Anomaly Detection. Video anomaly detection
(VAD) presents significant challenges due to the rarity of
anomaly data and the wide variety of abnormal events,
which hinder the generalization capabilities of existing
models across diverse scenarios. Traditional VAD meth-
ods can be broadly classified into frame-centric and object-
centric approaches. Frame-centric methods [1, 11, 32, 34,
39, 44, 55–57] analyze entire frames or sequences, often
leveraging reconstruction or prediction errors to identify
anomalies. These methods are particularly effective for de-
tecting global events, such as fires or smoke. However, they
struggle with localized anomalies and are prone to inter-
ference from normal regions within a frame, limiting their
precision in complex scenarios [11, 32, 34, 39, 53]. Object-
centric methods [7–10, 19, 41, 43, 54, 58] focus on specific
objects within frames by employing pre-trained object de-
tection models to extract bounding boxes and assess their
abnormality. This targeted approach is better suited for de-
tecting anomalies related to individuals or objects, such as
human falls or vehicle accidents. By concentrating on spe-
cific regions and reducing redundant information, object-
centric methods achieve improved accuracy and robustness,
especially in complex, multi-object environments. Build-
ing on these foundations, our approach is the first to in-
tegrate large-scale pre-trained models for pixel-level fine-
grained detection in VAD. This advancement enables pre-
cise anomaly localization, bridging the gap between frame-
level analysis and object-level detection, and significantly
enhancing overall detection performance.
Vision Foundation Models. In recent years, large-scale
pre-trained language models (LLMs) and vision-language
models (VLMs) have shown remarkable potential in ad-
vancing video anomaly detection. Models such as BLIP-
2 [26], LLaVA [29], LAVAD [59], VadCLIP [51], Video-
ChatGPT [35], and Video-LLaMA [61] have significantly
improved the understanding of complex visual tasks by in-
tegrating visual and linguistic information. Concurrently,
prompting techniques have gained traction in large-scale
vision models, enabling substantial progress in tasks such
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Figure 2. Pipeline of our proposed TAO. We first generate bounding boxes to identify objects in each frame. Next, we score these boxes
using object-centric video anomaly detection algorithms to extract potential anomalous boxes. To ensure robustness, we apply filtering to
eliminate redundant boxes. Finally, the filtered boxes and original frames are input into a prompt-based segmentation model to produce
pixel-level anomaly segmentation masks.

as image segmentation. By employing semantic prompts
(e.g., free-form text) and spatial prompts (e.g., points or
bounding boxes), these models achieve highly accurate seg-
mentation guided by input cues. Segmentation Founda-
tion Models (SFMs), such as the Segment Anything Model
(SAM) [21] and SEEM [64], have demonstrated exceptional
performance, particularly in zero-shot generalization and
multi-modal prompting, allowing for cross-task segmenta-
tion. Building on these advancements, the Segment Any-
thing Model 2 (SAM2) [42] further improves segmentation,
particularly for video-based applications. SAM2 integrates
prompting techniques to not only segment static objects
with precision but also capture dynamic, complex objects
in video contexts. This capability enables SAM2 to deliver
finer segmentation and enhanced localization accuracy in
video anomaly detection, addressing the challenges posed
by real-world variability and complexity. This work lever-
ages SAM2’s advanced video segmentation capabilities to
tackle the challenge of fine-grained video anomaly detec-
tion, achieving precise and robust anomaly identification in

complex scenarios.

3. Method

Preliminary. In the proposed video anomaly detection
(VAD) benchmark, a video clip is represented as a sequence
{f1, f2, . . . , fNf

} ⊆ C, where C is the set of all possible
video clips, and Nf denotes the total number of frames.
Each frame fi is expressed as fi = [pi,1, pi,2, . . . , pi,Ni

],
where Ni is the total number of pixels in the frame, and
pi,j ∈ P represents the j-th pixel, with P as the set of
possible pixel values. Each pixel pi,j is classified as either
“normal” or “anomalous”.
Overview. To achieve precise anomaly localization in
videos, we design a streamlined pipeline for pixel-level seg-
mentation in video anomaly detection. Our pipeline com-
prises four stages: bounding boxes extraction, anomalous
boxes extraction, robust filtering, and segmentation infer-
ence. The process begins by generating bounding boxes to
identify objects of interest. These boxes are then scored us-
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Figure 3. Impact of Redundant Segmentation on Performance. Potential anomalous boxes are used as prompts for SAM2 segmentation
(red masks: true anomalies, green masks: redundant results). Initially, SAM2 tracks true anomalies accurately, but tracking errors accumu-
late, leading to catastrophic forgetting and a collapse in Pixel-F1 performance.

Algorithm 1 Boxes Robustness Filtering

1: Input: A set of anomalous bounding boxes Banomaly =
{bi | si > τ} for each frame fi ∈ {f1, f2, . . . , fn},
where si is the anomaly score and τ is the threshold;
parameters k (tracking window size), h (overlap thresh-
old), l (save interval), and m (frame match threshold)

2: Output: Filtered bounding boxes Bfiltered with their cor-
responding object labels Lj

3: Initialize the list Bi to store the filtered bounding boxes
from frame fi

4: for each frame fi ∈ {f1, . . . , fn} do
5: Step 1: Inherit Existing Anomalous Boxes
6: for each bounding box bj ∈ Banomaly and bp from

frame fi−k to fi−1 do

7: if
i−1∑

p=i−k

I(IoU(bj , bp) > h) ≥ m then

8: Assign Lj = Lp

9: Remove bj from Bi

10: end if
11: end for
12: Step 2: Assign New Anomalous Boxes
13: for each remaining bj ∈ Banomaly and bp from frame

fi+1 to fi+k do

14: if
i+k∑

p=i+1

I(IoU(bj , bp) > h) ≥ m then

15: Assign a new object label Lj = F(bj)
16: Save the tuple Tbox = (fi, bj ,Lj)
17: end if
18: end for
19: Step 3: Save Boxes Every l Frames
20: if i mod l == 0 then
21: Save all bounding box tuples Tbox = (fi, bj ,Lj)

in the current frame
22: end if
23: end for

ing object-centric anomaly detection algorithms to extract
potential anomalies. A tracking-based filtering step follows
to eliminate redundant boxes and retain only robust ones.
Finally, the filtered boxes and original frames are fed into

a prompt-based segmentation model to generate pixel-level
anomaly masks. The pipeline is illustrated in Fig. 2.

3.1. Anomalous Boxes Extraction
Bounding Boxes Extraction. To achieve precise pixel-
level segmentation in video anomaly detection, pre-trained
object detection algorithms are used to generate bound-
ing boxes for objects within a frame, serving as potential
prompts for guiding the segmentation model. For a given
input frame f , the object detection model D outputs m
bounding boxes b1, b2, . . . , bm, each paired with a class la-
bel y1, y2, . . . , ym:

{(b1, y1), (b2, y2), . . . , (bm, ym)} = D(f) (1)

After the extraction of object bounding boxes in each
frame, object-centric VAD algorithms compute an anomaly
score si for each object within its bounding box bi. This
score is derived from features such as pose, speed, and
depth, and can be formally represented as:

si = A(bi) (2)

where A represents the scoring function used in object-
centric video anomaly detection algorithms. To isolate
anomalous objects, we filter the bounding boxes based on
an anomaly score threshold. Specifically, we retain only the
bounding boxes where the anomaly score exceeds a prede-
fined threshold τ , as shown in the following expression:

Banomaly = {bi | si > τ} (3)

where τ denotes the anomaly score threshold, si is the
anomaly score for the i-th object, and bi is the correspond-
ing bounding box.

3.2. Robust Filtering of Anomalous Boxes
The anomalous boxes detection from Sec. 3.1 contains nu-
merous false positives due to overlapping characteristics
between normal and abnormal boxes. This overlap com-
plicates threshold setting and leads to misclassifications.
These redundant boxes can significantly degrade segmen-
tation performance by generating inaccurate results and



overwhelming the model’s tracking capabilities, potentially
causing the loss of anomalous targets in subsequent frames.

As illustrated in Fig. 3, using potential anomalous boxes
as SAM2 prompts at fixed intervals reveals the impact of
tracking errors. While red masks indicate true anomalies
and green masks show redundant results, the model initially
tracks anomalous objects effectively. However, tracking er-
rors accumulate over time, leading to an increasing number
of incorrectly tracked objects. This deterioration ultimately
results in catastrophic forgetting of true anomalies, reflected
in steadily declining Pixel-F1 scores.

To enhance robustness and address redundancy, we
present the Boxes Robustness Filtering algorithm, which ex-
ploits the temporal consistency of true anomalous boxes.
Unlike redundant boxes that appear sporadically, true
anomalous boxes maintain consistent tracking of the same
target. The algorithm, detailed in Alg. 1, operates in three
key steps. First, the inheritance step computes the similar-
ity between each bounding box bj in the current frame fi
and bounding boxes bp from the previous k frames. If the
Intersection over Union (IoU) exceeds a threshold h for at
least m frames, bj inherits the label Lp from earlier frames,
ensuring consistent tracking of previously identified anoma-
lies. Second, the assignment step addresses bounding boxes
that fail to inherit a label by comparing them with bound-
ing boxes in the subsequent k frames. If the IoU exceeds h
for at least m frames, a new label Lj = F(bj) is assigned,
effectively labeling newly emerging anomalies. Finally, the
saving step records bounding boxes and their labels every l-
th frame, systematically capturing all identified anomalies.
By iteratively applying these steps, the Boxes Robustness
Filtering algorithm achieves robust tracking and localiza-
tion of anomalous objects. Each bounding box and its label
are stored as a tuple Tbox = (fi, bj ,Lj), ensuring spatial and
temporal consistency across video frames. This approach
reduces redundancy and strengthens anomaly detection ac-
curacy, providing a reliable basis for subsequent segmenta-
tion and analysis.

3.3. Inference of the Segmentation Model

Using the tuple Tbox = (fi, bj ,Lj) obtained from Sec. 3.2,
we extract the center point of each bounding box bj . Specif-
ically, given the coordinates of the box bj = [x1, y1, x2, y2],
the center point is calculated: cj =

(
x1+x2

2 , y1+y2

2

)
. Effec-

tively, these prompts are not saved for every frame but are
instead collected at regular intervals, specifically every l-th
frame, as outlined in Sec. 3.2. This ensures efficient storage
and processing while still capturing the necessary informa-
tion for accurate segmentation [23, 25]. For each selected
frame, both the center point cj and the bounding box bj
are stored as prompts. Rather than processing each frame
individually, we aggregate prompts from all saved frames
{f1, f1+l, f1+2l, . . . , fNf

}, where l denotes the saving in-

terval. The aggregated prompts are:

I = {(cj , bj , fi) | i = 1, 1 + l, 1 + 2l, . . . , Nf} (4)

where I represents the set of prompts that includes the cen-
ter points, bounding box coordinates bj , and original frames
fi for the selected frames.

By inputting this prompt information I saved at regu-
lar intervals into SAM2, which serves as the prompt-based
segmentation model M, we leverage its feature propagation
capabilities to efficiently generate pixel-level segmentation
results for the entire video. SAM2 propagates the segmen-
tation results from the prompted frames to the remaining
frames, producing pixel-level segmentation across the en-
tire video:

S = M(I) = {S1,S2, . . . ,SNf
} (5)

where Si = [p1, p2, . . . , pM ] denotes the segmentation re-
sult for frame fi, where each pixel pj is either “normal” or
“anomalous”. This approach enables the generation of the
complete segmentation set S, efficiently utilizing contextual
information from the prompts.

4. Experiments
4.1. A New Comprehensive VAD Benchmark
Benchmark Design. We present a novel benchmark frame-
work that integrates both pixel-level and object-level eval-
uation metrics to advance VAD model assessment. This
dual-level approach addresses the limitations of using single
evaluation metrics. Pixel-level metrics excel at identifying
subtle irregularities through independent pixel evaluation,
but struggle to capture broader spatial patterns. Object-level
metrics complement this by assessing global characteristics
like shape and position, enabling coherent anomaly tracking
and recognition. By combining these complementary per-
spectives, our framework provides a comprehensive evalu-
ation of both fine-grained details and holistic anomaly pat-
terns, particularly valuable for real-world applications.
Benchmark Datasets. UCSD Ped2 [47] contains 16 train-
ing and 12 test videos (240×360 pixels) captured by a fixed
overhead camera. The training set consists of normal pedes-
trian activities, while the test set includes anomalous events
such as bikers, skateboarders, and vehicles. ShanghaiTech
Campus [30], one of the largest VAD datasets, comprises
330 training and 107 test videos (480×856 pixels). While
the training set features normal scenarios, the test set con-
tains various anomalies including robbery, fighting, and
unauthorized cycling in pedestrian zones.
Benchmark Metrics. For pixel-level evaluation, we em-
ploy four metrics: Pixel-AUROC measures discrimination
between normal and anomalous pixels across thresholds,
Pixel-AP assesses detection precision by balancing false



Figure 4. Qualitative comparison with anomaly detection models adapted for video anomaly detection on the UCSD Ped2 dataset.
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Table 1. Quantitative comparison on video anomaly detection with pixel-level and object-level metrics on the UCSD Ped2 dataset.

Pixel-level Object-level

Method Pixel-AUROC ↑ Pixel-AP ↑ Pixel-AUPRO ↑ Pixel-F1 ↑ RBDC ↑ TBDC ↑

AdaCLIP (Zero-shot) [5] 51.02 1.32 33.98 2.61 5.8 10.6
AdaCLIP (Fully fine-tuned) [5] 53.06 4.97 50.66 11.19 12.3 15.5
AnomalyCLIP (Zero-shot) [63] 51.63 21.20 36.34 5.92 7.5 11.2
AnomalyCLIP (Fully fine-tuned) [63] 54.25 23.73 38.59 7.48 13.1 21.0
DDAD (Fully trained) [37] 55.87 5.61 15.12 2.67 18.01 13.29
SimpleNet (Fully trained) [33] 52.49 20.51 44.05 10.71 51.18 27.75
DRAEM (Fully trained) [60] 69.58 30.63 35.78 10.89 44.26 70.64
TAO (Partially fine-tuned) 75.11 50.78 72.97 64.12 83.6 93.2

Table 2. Quantitative comparison on video anomaly detection with
RBDC and TBDC metrics on the UCSD Ped2 dataset.

Method RBDC ↑ TBDC ↑

OCAD [19] 52.7 72.8
SS-VAD [40] 62.5 80.5
SiVL [41] 74 89.3
AED-SSMTL [10] 72.8 91.2
TAO (Ours) 83.6 93.2

positives and negatives, Pixel-AUPRO quantifies segmenta-
tion accuracy through region overlap, and Pixel-F1 provides
an integrated precision-recall measure. For object-level
assessment, we utilize Region-Based Detection Criterion
(RBDC) and Track-Based Detection Criterion (TBDC).
RBDC measures spatial accuracy using Intersection over
Union (IoU) with threshold α, while TBDC evaluates tem-
poral consistency in tracking anomalous regions across

Table 3. Quantitative comparison on video anomaly detection with
RBDC and TBDC metrics on the ShanghaiTech Campus dataset.

Method RBDC ↑ TBDC ↑

OCAD [19] 20.7 44.5
BAF-AT [9] 41.3 78.8
AED-SSMTL [10] 43.2 84.1
HF2VAD [31] 45.4 84.5
STPT [38] 51.6 84.6
TAO (Ours) 62.1 85.4

frames. Together, these metrics provide comprehensive
evaluation of both spatial precision and temporal coherence.

4.2. Implementation Details
Our framework builds upon SAM2 [42], utilizing an object-
level anomaly detection algorithm [43] to extract anoma-
lous bounding boxes as segmentation prompts. We em-



ploy SAM2 [42] as the prompt-based segmentation model,
which integrates these prompts with original frames for pre-
cise anomaly segmentation. Our implementation adopts
a partial fine-tuning strategy, where only the object-level
VAD algorithm is fine-tuned on target datasets, while
SAM2 retains its pre-trained weights for inference. In the
bounding box threshold filtering stage, we assign anomaly
scores based on pose and depth features, with thresholds
set to τ = 1.5 for UCSD Ped2 and τ = 1.6 for Shang-
haiTech Campus. The subsequent robustness filtering stage
employs a tracking window of k = 5, frame match thresh-
old of m = 3, and box overlap threshold of h = 0.2,
with save intervals of l = 5 and l = 15 for UCSD
Ped2 and ShanghaiTech Campus respectively. For seg-
mentation, we utilize SAM2 with hiera base-plus weights
on an NVIDIA RTX 4090 GPU. To ensure robust evalu-
ation, overlapping boxes of the same anomaly are merged,
and segmentation probability maps are uniformly binarized.
For object-level metrics, we derive bounding boxes from
segmentation extremal coordinates. Given anomaly pix-
els P = (x1, y1), (x2, y2), . . . , (xN , yN ), we compute the
box coordinates as: xmin = min(xi,yi)∈P xi, xmax =
max(xi,yi)∈P xi, ymin = min(xi,yi)∈P yi, ymax =
max(xi,yi)∈P yi, where the resulting bounding box
(xmin, ymin, xmax, ymax) is used for computing RBDC and
TBDC metrics, providing robust spatial evaluation at the
object level.

4.3. Comparison to Anomaly Detection Models

Given the lack of pixel-level segmentation capabilities
in current video anomaly detection models, we bench-
mark several state-of-the-art image anomaly detection al-
gorithms, including AdaCLIP [5], AnomalyCLIP [63],
DRAEM [60], DDAD [37], and SimpleNet [33], to eval-
uate both pixel-level and object-level metrics on the UCSD
Ped2 dataset. AdaCLIP and AnomalyCLIP were selected
for their pre-trained vision-language architectures, which
closely align with SAM2’s design and demonstrate strong
zero-shot capabilities. To ensure a fair comparison, we
assess both AdaCLIP and AnomalyCLIP under zero-shot
and fully fine-tuned settings. In contrast, DRAEM, DDAD,
and SimpleNet, as fully trained models, provide robust
baselines for pixel-level and object-level anomaly detec-
tion, representing diverse methodological approaches. For
anomaly detection, video streams are processed frame-by-
frame through each algorithm, generating heatmaps that
identify potential anomalies. Pixel-level segmentation is
achieved by applying a threshold to these heatmaps, allow-
ing precise localization of anomalous regions.

As shown in Tab.1, the experimental results clearly
demonstrate the advantages of our model in both pixel-level
and object-level anomaly detection. While most bench-
marked models struggle to balance these two aspects, of-

ten excelling in one while underperforming in the other,
our model achieves robust performance across both dimen-
sions. This balance reflects its strong and versatile design,
enabling precise pixel-level segmentation and maintaining
spatial-temporal consistency at the object level. Moreover,
our partial fine-tuning approach effectively leverages pre-
trained features, minimizing the need for extensive dataset-
specific training. In contrast, fully trained models such
as DRAEM, DDAD, and SimpleNet, as well as vision-
language models like AdaCLIP and AnomalyCLIP, fail to
achieve comparable results. Fig. 4 further illustrates the
strengths of our method. The segmentation results produced
by our model are more complete and detailed, accurately
delineating object boundaries while preserving the integrity
of anomalous objects.

4.4. Comparsion to Conventional Video Anomaly
Detection Models

To assess the performance of our proposed method, we
conducted comprehensive experiments on two widely used
datasets, UCSD Ped2 and ShanghaiTech Campus. Our
approach was benchmarked against several state-of-the-art
video anomaly detection models, including SS-VAD [40],
SiVL [41], AED-SSMTL [10], HF2VAD [31], BAF-AT [9],
and STPT [38]. Due to the absence of fine-grained segmen-
tation capabilities in traditional methods, the evaluation was
focused on object-centric anomaly detection and limited to
object-level metrics, TBDC [40] and RBDC [40]. These
metrics provide a robust and meaningful basis for compar-
ing the effectiveness of our model with existing approaches.

Our method achieves state-of-the-art performance on
both the UCSD Ped2 and ShanghaiTech Campus datasets.
On UCSD Ped2, it outperforms existing methods in TBDC
and RBDC metrics, demonstrating precise tracking and lo-
calization of anomalous objects across video frames. On
the more challenging ShanghaiTech Campus dataset, char-
acterized by complex backgrounds and subtle anomalies,
our method consistently surpasses baselines by delivering
balanced performance across all evaluation metrics. Un-
like existing approaches, which often excel in isolated met-
rics but fail to generalize, our model effectively integrates
object-centric detection and fine-grained segmentation, en-
abling robust anomaly localization and tracking under di-
verse real-world conditions, as shown in Tabs. 2 and 3.

To conclude, our method establishes a new standard in
video anomaly detection by combining object-centric de-
tection with fine-grained segmentation. This integration
enables precise localization and robust tracking of anoma-
lous objects, addressing the limitations of traditional meth-
ods that struggle with balanced performance across met-
rics. Our approach demonstrates versatility and effective-
ness across diverse datasets, highlighting its potential for
real-world applications.



Table 4. Ablation study on proposed key components, evaluated with pixel-level and object-level metrics on the UCSD Ped2 dataset.

Pixel-level Object-level

Video Track
Mode

Box Robust
Filtering Algorithm Pixel-AUROC ↑ Pixel-AP ↑ Pixel-AUPRO ↑ Pixel-F1 ↑ RBDC ↑ TBDC ↑

× × 41.72 25.30 40.55 32.99 41.0 71.6
× ✓ 39.06 22.80 38.09 30.56 39.3 71.7
✓ × 68.90 38.47 67.23 52.17 70.8 76.9
✓ ✓ 75.11 50.78 72.97 64.12 83.6 93.2

𝜏Anomaly Threshold
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Figure 5. Sensitivity Analysis of Anomaly Threshold (τ ). We
evaluate performance under varying threshold on ShanghaiTech
Campus dataset.
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Figure 6. Robust Testing of SAM2 Backbones. We compare the
performance across different SAM2 model variants.

4.5. Further Empirical Study
Ablation Study. We conduct ablation experiments on the
UCSD Ped2 dataset to evaluate two components: video
tracking mode and box robust filtering. Video tracking
mode, a SAM2 component, enables temporal analysis,
while disabling it reduces the model to SAM, performing
frame-by-frame segmentation. Disabling box robust filter-
ing uses raw anomaly-thresholded boxes as prompts. Tab. 4
shows the effects of each component on pixel- and object-
level metrics. The baseline model, with both components
disabled, performs the worst. Enabling box robust filter-

ing alone yields minimal improvement, while activating
video tracking mode significantly boosts pixel-level accu-
racy. The best performance is achieved with both compo-
nents enabled, demonstrating their synergistic effect. These
results confirm the necessity of both temporal tracking and
robust filtering in our framework.
Sensitivity Analysis. We conduct a sensitivity analysis
to assess how variations in the anomaly threshold τ affect
our framework’s performance. Fig. 5 shows the impact of
τ on four metrics—Pixel-AUROC, Pixel-AP, TBDC, and
RBDC—using the ShanghaiTech Campus dataset. As τ
ranges from 1.0 to 1.9, the framework performs stably, with
optimal results at τ = 1.6. TBDC is most sensitive, peaking
at 85% at τ = 1.6, while RBDC stays around 62%. Pixel-
level metrics, Pixel-AUROC and Pixel-AP, also show steady
trends, reflecting the framework’s balance of fine-grained
anomaly detection and object consistency. This analysis
highlights the robustness and adaptability of our framework
across threshold variations, ensuring reliable detection in
diverse scenarios.
Robustness Testing. We evaluate our framework’s robust-
ness through extensive testing across different SAM2 back-
bone architectures (Fig. 6). Our analysis covers models
from the lightweight Tiny variant to the full-scale Large
model, with Base+ consistently yielding the best results.
This stability suggests that the framework’s effectiveness is
not dependent on backbone capacity. While larger mod-
els show slight improvements in pixel-level metrics, per-
formance remains strong across all variants. These results
validate the framework’s reliability and robustness, demon-
strating its suitability for deployment in a wide range of sce-
narios, irrespective of computational constraints.

5. Conclusion

This paper presents TAO, a framework integrating coarse
object detection with fine-grained anomaly localization in
videos. Leveraging SAM2 and our dual-level evaluation, it
enables precise segmentation and robust tracking. Experi-
ments on UCSD Ped2 and ShanghaiTech datasets demon-
strate state-of-the-art performance in pixel- and object-level
metrics, advancing video anomaly detection.
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